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Abstract Accurate estimates of fossil fuel carbon dioxide (FFCO2) emissions are a critical component of
local, regional, and global climate agreements. Current global inventories of FFCO2 emissions do not
directly quantify emissions at local scales; instead, spatial proxies like population density, nighttime lights,
and power plant databases are used to downscale emissions from national totals. We have developed a
high-resolution (hourly, 1 km2) bottom-up Anthropogenic Carbon Emissions System (ACES) for FFCO2, based
on local activity data for the year 2011 across the northeastern U.S. We compare ACES with three widely used
global inventories, finding significant differences at regional (20%) and city scales (50–250%). At a spatial
resolution of 0.1°, inventories differ by over 100% for half of the grid cells in the domain, with the largest
differences in urban areas and oil and gas production regions. Given recent U.S. federal policy pull backs
regarding greenhouse gas emissions reductions, inventories like ACES are crucial for U.S. actions, as the
impetus for climate leadership has shifted to city and state governments. The development of a robust
carbon monitoring system to track carbon fluxes is critical for emissions benchmarking and verification. We
show that existing downscaled inventories are not suitable for urban emissions monitoring, as they do not
consider important local activity patterns. The ACES methodology is designed for easy updating, making it
suitable for emissions monitoring under most city, regional, and state greenhouse gas mitigation initiatives,
in particular, for the small- and medium-sized cities that lack the resources to regularly perform their own
bottom-up emissions inventories.

1. Introduction

Global emissions of carbon dioxide from the combustion of fossil fuels (FFCO2) comprise the largest net flux
of carbon into the atmosphere (Intergovernmental Panel on Climate Change, 2013). However, these fluxes
are highly variable across space and time, and quantifying their spatiotemporal patterns remains a challenge
at subnational and subannual scales. Inventories of FFCO2 emissions have been conducted at global and
national scales for several decades, largely based on public reports of energy consumption published by
national and international statistical agencies (Andres et al., 1996; Gregg et al., 2009; Marland et al., 1985).
Higher-resolution, gridded inventories were developed soon after in order to support continental and regio-
nal modeling of the terrestrial carbon cycle (Gurney et al., 2003; Peters et al., 2007; Schuh et al., 2010). More
recently, continued improvements in atmospheric measurement and modeling platforms (Lauvaux et al.,
2016; McKain et al., 2014, 2012; Ogle et al., 2015; Turnbull et al., 2015; Wu et al., 2011), and a rapidly growing
adoption of regional and local emissions mitigation policies, have led to a growing demand for detailed,
sector-specific emissions inventories at highly resolved spatial and temporal scales (1 km2, hourly) that cover
broad domains (regional, continental) (Global Covenant of Mayors for Climate and Energy, 2016; Regional
Greenhouse Gas Initiative, 2005; State of California AB-32, 2006). Although a national carbon policy will have
as its ultimate goal the reduction of total emissions, achieving reductions requires policies that are designed
for and implemented at state and local scales, due to the highly variable nature of the many sources of car-
bon emissions. Unfortunately, the United States currently lacks the ability to accurately and comprehensively
measure and track changes in FFCO2 emissions at local and regional scales (Gurney et al., 2015).

Detailed quantification of emissions—at all spatial scales from city to national—is necessary to inform the
design, implementation, and evaluation of emissions mitigation policies across a wide range of administra-
tive scales (city, state, regional, and national) (Ciais et al., 2014; Gurney et al., 2015). Over 600 cities, represent-
ing 445,581,500 people worldwide, have signed pledges to reduce their greenhouse gas emissions and
create robust inventories of their emissions (Global Covenant of Mayors for Climate and Energy, 2016).
Having sector-specific emissions estimates is vital, as state and local governments may prefer to focus on
particular sectors where emissions reductions may be mandated by local policies, easier to achieve, or
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more cost effective (Miller & Michalak, 2016). For example, in large urban areas city governments may have
limited authority or ability to influence road sector emissions from freight or commuter traffic but can more
easily enact energy efficiency policies for residential or commercial buildings.

City- and state-level emissions inventories rarely report on the within domain spatial distribution of emis-
sions, as they are typically designed to provide aggregated emissions totals to support trend analysis and
reporting requirements. However, understanding the spatial patterns of emissions within a city, and how
these emissions covary with other variables such as building, population, and road densities provides impor-
tant insights into the processes that drive emissions patterns. Improved understanding of these processes is
vital to designing effective emissions mitigation policies at urban and state scales.

At both local and regional scales, considerable progress has been made in validating the inventory estimates
of emissions by comparing them with independent measurements of atmospheric CO2 concentrations
through the use of mesoscale chemical transport models (Brioude et al., 2013; Feng et al., 2016; Lauvaux
et al., 2016). However, a major challenge in interpreting atmospheric CO2 concentrations is that the daily
and seasonal fluxes of carbon between the biosphere and atmosphere can be aliased with the similarly vary-
ing fossil fuel fluxes (Engelen et al., 2002; Geels et al., 2004; Hardiman et al., 2017; Hutyra et al., 2014; Shiga
et al., 2014; Zhang et al., 2014). As fossil fuel fluxes are assumed to be more certain than the biosphere fluxes,
particularly at continental scales, atmospheric inversion models designed to estimate net fluxes of carbon
into or out of the biosphere have tended to assume low or zero uncertainty in the FFCO2 flux (Ogle et al.,
2015; Peters et al., 2007). However, this assumption of low uncertainties in FFCO2 inventories is difficult to
justify at subcontinental scales, as biases in spatial patterns of FFCO2 fluxes can propagate through the trans-
port model to bias posterior estimates of regional biogenic carbon sinks and sources. Several studies have
demonstrated that errors in the characterization of FFCO2 in continental-scale inversions can result in large
(50%–100%) deviations in the retrieved estimates of biosphere carbon storage and fluxes (Gurney et al.,
2005; Schuh et al., 2010).

In considering uncertainties in emissions inventories, it is necessary to distinguish between (1) uncertainty in
the total emissions estimates (also referred to as “magnitude” uncertainty) and (2) uncertainty in the spatial
and/or temporal distribution of emissions in the inventory domain (also referred to as “downscaling,” “disag-
gregation” or “representation” uncertainty). It is challenging to directly estimate magnitude uncertainties for
bottom-up inventories, as the underlying data are typically only available from a few sources, usually govern-
ment agencies, and uncertainty estimates for these source data sets are rarely reported. Previous efforts to
quantify magnitude uncertainties have relied extensively on “expert judgment” (Andres et al., 1996, 2014;
Marland et al., 1985). These studies reviewed global and national data on fuel production and consumption,
fuel energy and carbon content, and combustion/emission factors to select representative uncertainties in
these terms for different categories of country. Marland et al. (1985) estimated global uncertainties of
6–10% in FFCO2 emissions. Andres et al. (1996) used the magnitude of revisions to historical estimates of fuel
consumption as a proxy for total uncertainty, estimating a mean global uncertainty of 8%.

At the national level, Gregg et al. (2008) used expert judgment and data on revisions to Chinese energy
consumption to estimate uncertainties in U.S. emissions at 3–5% and Chinese emissions at 15–20%.
Andres et al. (1996) grouped every country into one of seven groups based on perceived similarities in uncer-
tainty. Andres et al. (2014) interpolated linearly between the Gregg et al. (2008) estimates for the U.S. and
China and assigned uncertainty values along the interpolation to the seven country groups from Andres
et al. (1996), with the resulting estimates of 2σ magnitude uncertainties thus ranging from 4 to 20% depend-
ing on the country.

Another commonmethod used to approximate magnitude uncertainties has been to compare inventories of
the same domain that are based on different data sources, as in Macknick (2014) and Hutchins et al. (2016).
Although this approach does not explicitly account for the inherent uncertainties in each inventory, it
provides an easily calculated estimate of the minimum uncertainty by considering the magnitude of dis-
agreement across inventories. In these studies, energy statistics and/or emissions estimates were compared
at national and global scales. Macknick (2014) estimated global uncertainty in fossil fuel consumption to be
9.2% in 2007, resulting in a 2.7% uncertainty in FFCO2 emissions globally, but also found that national FFCO2

emissions uncertainties exceeded 10% for seven of the largest emitters. Hutchins et al. (2016) compared U.S.
emissions estimates from several of the most widely used global FFCO2 inventory products, including the
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Carbon Dioxide Information and Analysis Center (CDIAC) (Boden et al., 2017), Open-source Data Inventory for
Anthropogenic CO2 (ODIAC) (Oda & Maksyutov, 2011), Emissions Database for Global Atmospheric
Research (EDGAR) (Olivier & Janssens-Maenhout, 2012), and Fossil Fuel Data Assimilation System (FFDAS)
(Asefi-Najafabady et al., 2014), and found uncertainties of 8.7% at the national scale for the year 2008.

Efforts to estimate downscaling or representation uncertainties have focused on quantifying differences in
the spatial patterns of emissions reported by different inventories and methods. This type of uncertainty
exists because emissions estimates are almost always generated at a level of spatial aggregation that is coar-
ser than the source activities that produce the actual emissions. These emissions estimates must then be
downscaled to a grid format using spatial proxies that are believed to represent the patterns in source activ-
ity. While for some types of emissions this aggregation is relatively minimal (e.g., combining emissions from
multiple smokestacks into a single “facility” location), for other sectors (e.g., road vehicles or buildings), emis-
sions may be reported only at the state or county level. These coarser emissions must then be downscaled to
the desired resolution, using data proxies that are available at that resolution (e.g., a map of the road network
or population density). Imperfections in how these proxies accurately represent the “true” spatial pattern of
emissions produces representation errors. Evaluating this type of uncertainty through inventory comparison
was performed at the national level for the U.S. by Hutchins et al. (2016), who found that the spatial correla-
tions between themajor global inventories ranged from 0.35 to 0.98 depending on the grid resolution. Gately
et al. (2015) found small differences in U.S. on-road CO2 emissions at the national scale (~10%) but large dif-
ferences at state and urban scales (50–100%).

Most of the widely used global FFCO2 inventories utilize a downscaling approach, whereby national emis-
sions totals are disaggregated using a variety of spatial proxies and statistical methods to assign national
emissions totals to a grid. The Carbon Dioxide Information and Analysis Center (CDIAC) produces annual
inventories at 1.0° resolution using population density as a spatial proxy to downscale national emissions esti-
mates based on data from the United Nations Energy Statistics Yearbook (Boden et al., 2017; United Nations,
2014). ODIAC (Open-source Data Inventory for Anthropogenic CO2) estimated monthly emissions at 1 km2

using the same national totals as CDIAC but downscaled using a power plant database and a remotely sensed
“nightlights” data product (Oda & Maksyutov, 2011). The Emissions Database for Global Atmospheric
Research (EDGAR) estimated annual FFCO2 emissions at 0.1° resolution using sector-specific spatial proxies
to downscale national totals reported by the United Nations Framework Convention on Climate Change
(Olivier & Janssens-Maenhout, 2012). The Fossil Fuel Data Assimilation System (FFDAS) estimated hourly
emissions at 0.1° using a combination of a power plant database, satellite nightlights, and population density
to downscale national emissions totals reported by the International Energy Agency (IEA) (Asefi-Najafabady
et al., 2014).

National- or local-scale “bottom-up” inventories rely on considerably more detailed spatially and temporally
resolved data to characterize the patterns of activities that generate FFCO2 emissions. In the United States,
the only currently available bottom-up FFCO2 inventory with national coverage remains the Vulcan Project
(Gurney et al., 2009), which estimated hourly FFCO2 emissions from eight different source sectors at a
10 km2 resolution across the continental U.S. for the year 2002. More recently, several other bottom-up inven-
tories have been developed that focus on single source sectors (Gately et al., 2015, 2013; McDonald et al.,
2014) or on local or regional emissions patterns (Feng et al., 2016; Gurney et al., 2012; Patarasuk et al.,
2016). Comparisons of these new estimates with global inventories have revealed large differences in the
magnitude and spatial distribution of emissions estimates, especially over large urban areas where themajor-
ity of emissions are believed to originate. For example, bottom-up studies have found that EDGAR overesti-
mates urban vehicle emissions by 40–80% for cities in California (McDonald et al., 2014) and by as much as
100% for many of the largest U.S. cities while significantly underestimating emissions from the mostly rural
interstate highway system (Gately et al., 2015, 2013).

In this study we present a new bottom-up estimate of FFCO2 emissions at high resolution (hourly, 1 km2),
developed as part of a prototype carbon monitoring system (CMS) for the northeastern U.S. This new inven-
tory, the Anthropogenic Carbon Emissions System (ACES), provides detailed, sector-specific estimates of car-
bon emissions at the spatial and temporal scales that are increasingly demanded by the mesoscale
atmospheric and carbon cycle modeling communities, as well as both local and state-level policymakers.
ACES is the first multistate regional inventory to report hourly FFCO2 fluxes at a 1 × 1 km gridded
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resolution for all major carbon-emitting sectors, using an extensive database of high-resolution spatial
proxies. We report magnitude uncertainties for the five largest source sectors in ACES (power plants,
on-road, residential, commercial, and industrial) and combine those estimates to produce minimum total
uncertainties in emissions across the whole ACES domain. We then characterize large downscaling
uncertainties at regional and urban scales when ACES is compared with ODIAC, EDGAR, and FFDAS at
multiple spatial resolutions. The impact of spatial aggregation on the emissions flux intensities of different
source sectors and different inventories is evaluated, and we quantified the spatial correlations between
the four inventories and between emissions and local population density. Finally, we quantified the urban
area contributions to total FFCO2 emissions at both the domain and state scales, revealing substantial
variations in emissions source sector profiles between states.

2. Data and Methods
2.1. ACES—Anthropogenic Carbon Emissions System

We calculated annual and hourly CO2 fluxes for nine different emissions sectors across the northeastern
United States (Figure 1). ACES reports annual emissions for a base year of 2011 on a 1 × 1 km spatial grid,
partitioned by emitting sector. The 2011 annual emissions were then used to calculate hourly emissions
for two more recent calendar years, 2013 and 2014, holding the total emissions constant but accounting
for seasonal and daily variations in meteorology, fuel consumption, and traffic patterns across these 2 years.
A brief summary of the data sources and scaling methodology is presented here, with a detailed description

Figure 1. Anthropogenic carbon emissions from the northeastern U.S. from ACES, ODIAC, EDGAR, and FFDAS. ACES and ODIAC inventories are at their native spatial
resolutions of 1 × 1 km. EDGAR and FFDAS are at their native resolution of 0.1° × 0.1°. ACES, ODIAC, and EDGAR are composed of FFCO2 emissions from a nearly
identical set of source sectors (ODIAC and EDGAR include emissions from airborne aircraft, ACES does not). FFDAS omits emissions from cement production, marine
vessels, and aircraft.
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of all methods provided in the supporting information (SI). The full ACES data set is publically available for
download at https://doi.org/10.3334/ORNLDAAC/1501.

Emissions of FFCO2 from the residential, commercial, industrial, nonroad mobile, aircraft, marine, and rail
sectors were derived from the U.S. Environmental Protection Agency’s (EPA) National Emissions Inventory
(NEI) for 2011 (United States Environmental Protection Agency, 2014a). Emissions from point sources, which
include electric power generation, industrial facilities, and aircraft takeoff and landing operations, were esti-
mated using a combination of data from the NEI and from the EPA Greenhouse Gas Reporting Program
(GHGRP) (United States Environmental Protection Agency, 2014b). On-road CO2 emissions were obtained
from the Database of Road Transportation Emissions (DARTE) (Gately et al., 2015).

Aircraft sector emissions were estimated for near-surface emissions only, covering aircraft taxiing, takeoff and
landing operations, and other ground-based airport vehicles and on-site stationary combustion sources. All
emissions for this sector are treated as point sources located at the airport location reported by the NEI.
Railway CO emissions were obtained from NEI and converted to CO2 using emission factors from United
States Environmental Protection Agency (2009a). Emissions were summed by county and then spatially dis-
tributed onto the NEI-provided “Rail Line Shape Files” GIS line shapefile. Marine vessel CO emissions from NEI
were converted to CO2 using emissions factors from United States Environmental Protection Agency (2009b)
and assigned to waterways and port areas using the NEI “Port Area” shapefile. Additional details for these
three sectors are provided in the SI. We do not calculate magnitude uncertainties for the aircraft, rail, andmar-
ine sectors, as the EPA does not report estimates of uncertainty for emissions, and there are no other available
data sets with which to compare our ACES estimates. However, the combined emissions from these sectors
comprise less than 1% of total FFCO2 emissions in the ACES domain, so the overall impact of these unknown
uncertainties on total emissions is expected to be very small.

For other point sources, NEI and GHGRP data were partitioned into electricity-generation facilities and non-
electricity industrial facilities. For the 14,883 NEI point sources, CO emissions were converted into CO2 emis-
sions using emissions factors from United States Environmental Protection Agency (2014c) and from Gurney
et al. (2010). The GHGRP reports emissions from each facility as CO2, which reduces the uncertainty associated
with conversion factors. Where possible we use the GHGRP emissions (N = 1,016). Annual, county-level CO
emissions for nonpoint industrial sources were obtained from the NEI for industrial sources that are too small
to be included in the NEI point source or GHGRP databases. For the GHGRP electricity-generating facilities, we
calculated magnitude uncertainties following the methods described in Gurney et al. (2016). We compared
annual FFCO2 emissions reported by the GHGRP and the EPA eGRID database for 193 power plants in our
ACES domain that were common to both databases. The mean relative difference between the GHGRP
and eGRID estimates was 9.8%. We apply this mean uncertainty value to all power plants emissions (both
NEI and GHGRP) in the ACES domain, resulting in a total uncertainty for this sector of ±8.8 Tg C (i.e., ±9.8%
of the total sector emissions of 90.1 Tg C).

For the DARTE on-road emissions, we calculated magnitude uncertainties following the methods used in
Gately et al. (2013) and Mendoza et al. (2013). We used 1 sigma uncertainties in the levels of vehicle miles
traveled reported by the Federal Highway Administration (2017) and then propagated these uncertainties
through the DARTE emissions model. See Gately et al. (2013) for details of this procedure. Total uncertainty
for this sector was ±5.8 Tg C (i.e., ±7.1% of the total emissions of 81.7 Tg C). Annual CO2 emissions were then
downscaled to hourly estimates using hourly vehicle counts obtained from 492 in-road automatic traffic
recorders spread across the domain (Figure S6). See the SI for more details.

For emissions from vehicles operating off of the public road network (e.g., construction vehicles, agricultural
vehicles, and lawn equipment), estimates of county-level CO2 were obtained from the NONROAD2008 model
included in the EPA MOVES2014a (Motor Vehicle Emission Simulator) model, available at http://www.epa.
gov/otaq/nonrdmdl.htm. Nonroad emissions were given a uniform spatial distribution within each county,
as no data on within county spatial patterns were available. Due to data paucity, no uncertainty estimates
were made for this sector.

For the residential, commercial, and nonpoint industrial sectors we use NEI reported emissions of CO at the
county scale. We convert CO to CO2 using emissions factors from the EPA WEBFire database (United States
Environmental Protection Agency, 2014c) and from Gurney et al. (2010) depending on fuel type and
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combustion process (Appendix A in the SI). For these three sectors, the NEI estimates rely on a combination of
state and county level data on fuel consumption reported by both the states themselves and by the Energy
Information Administration’s State Energy Data System (SEDS). As none of these sources of data report uncer-
tainties for their emissions or fuel consumption estimates, a direct calculation of magnitude uncertainty for
these sectors is not possible. We approximate an estimate for this uncertainty by comparing our ACES state
total CO2 emissions to the SEDS sector total estimates for the states that are wholly contained within our
domain. We aggregated the commercial and industrial emissions from both data products for this compar-
ison, so as to avoid potential issues arising from differences in how emissions are assigned between these
categories. We calculated the differences in emissions estimates for each state, summed these over all states,
and then divided by the mean of the total SEDS and total ACES emissions for those states. This produces a
“percent relative difference” (RD) statistic that approximates the magnitude uncertainty in total emissions
for each of these sectors across the whole domain. For the residential sector the RD was 12.8%, and for the
industrial/commercial sector the RD was 7.8%. Magnitude uncertainties for each ACES sector as a whole were
calculated as the total sector emissions plus/minus the total emissions multiplied by the sector RD. We also
calculated RD values for the electric power sector using the above methods and found the RD for that sector
to be only 3.3%. As this was smaller than the uncertainty estimate of 9.8% calculated using the eGRID versus
GHGRP method described above, we retained that larger value of uncertainty for that sector in our results.

Commercial emissions were downscaled from county to Census Block using the number of jobs in each block
obtained from the Longitudinal Employment-Household Dynamics database (LODES) (United States Census
Bureau, Center for Economic Studies, 2014). LODES was not available for Massachusetts; therefore, the
Massachusetts Tax Assessor Parcel data (Metropolitan Area Planning Council, 2014) were used to assign
emissions based on the building square footage within each commercial-use parcel. For the LODES data,
the number of jobs in each Census Block was divided by the total jobs in the county to produce an allocation
factor. For the Massachusetts parcel data, the square footage of each parcel was divided by the total square
footage in the county to produce the allocation factor. County total emissions were then multiplied by the
factor for each block (parcel) to produce block (parcel) total emissions estimates. For residential sector emis-
sions, we use a similar method to downscale from the county totals to Census Block Groups, using data on the
number of households in each Census Block Group partitioned by type of home heating fuel (United States
Census Bureau, 2015). See the supporting information for more details.

CO2 emissions associated with oil and gas production at the county level were calculated using the EPA Oil
and Gas Emission Estimation tool (http://www.epa.gov/ttnchie1/net/2011inventory.html). Data on oil and gas
wellhead locations were obtained frommultiple state sources (New York State Department of Environmental
Conservation, 2016; Pennsylvania Department of Environmental Protection, 2016; Virginia Department of
Mines, Minerals, and Energy, 2016; West Virginia Department of Environmental Protection, 2016) and used
to assign emissions to individual wellheads within each county. Due to data paucity, no uncertainty estimates
were made for this sector. Emissions from this sector comprise 3.5% of total ACES emissions in the domain;
the impact of these unknown uncertainties is expected to be small.

2.2. Inventory Comparisons and Statistical Analysis

To quantify uncertainties in the spatial distribution of FFCO2 emissions, we compared our ACES inventory to
the three most widely used gridded inventories: ODIAC, EDGAR, and FFDAS. ODIAC is available for 2011 at
0.083° (~1 km2) resolution, while EDGAR and FFDAS are both available for the year 2010 at 0.1° resolution.
From 2010 to 2011 U.S. emissions changed by only�2.3%, so the interannual difference between inventories
should be relatively small for the northeast domain. A common challenge in comparing FFCO2 inventories is
variable source sectors included by different inventories, as well as the definitions of these sectors, as they are
often inconsistent across inventories. In this case, EDGAR and ODIAC both comprise all of the same sectors as
our inventory, with the exception that both include airborne aircraft emissions, whereas ACES includes only
aircraft takeoff and landing emissions. FFDAS does not include emissions from oil and gas production, air and
marine transport, or cement manufacturing, although for our study domain these differing sectors represent
only 4.3% of total FFCO2 emissions (12.2 Tg C) as estimated by ACES, so the comparison of all four inventories
is relatively consistent. We compare all inventories using their reported total FFCO2 emissions, with no efforts
made to harmonize sectors or years. Differences in inventory emissions will therefore reflect all sources of
deviation, including the slight mismatches in vintage and sectoral composition. We also compare the ACES
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inventory with the Vulcan inventory (Gurney et al., 2009), which reports emissions from the year 2002.
Although Vulcan is the only other available bottom-up inventory for the U.S., its vintage year of 2002 limits
its utility for comparison with the 2011 ACES. To isolate the differences associated with the spatial distribution
of emissions between the two products, we scaled the total Vulcan emissions to match the ACES totals and
calculated pixel scale differences (Figure S8 and related text in the supporting information).

To evaluate the spatial uncertainty across the four contemporaneous inventories of ACES, ODIAC, EDGAR, and
FFDAS, we calculated the percent RD between all inventories at the grid cell scale. We define RD here as the
difference between the highest and lowest emissions estimate in each grid cell divided by the mean of all
inventories’ emissions estimates for that grid cell. Note that this is slightly different from how RD is defined
in Andres et al. (2012). The RD statistic provides a conservative estimate of the uncertainty in emissions at
local scales as the use of the unweighted mean of the four inventories implicitly assumes that for a given grid
cell the emissions estimate from each inventory is equally plausible. We observe that FFDAS and ODIAC
report zero values for emissions in many locations where emissions-generating source activities are known
to be present. In these cases, the calculated RD overestimates the uncertainty, as the zeroes would otherwise
be dropped given this outside knowledge. Finally, we calculated the Pearson correlation coefficients (r)
between all pairs of inventories and between each inventory’s emissions and population (obtained from
the LandScan population database (Oak Ridge National Laboratory, 2014)) at both the inventory’s native
spatial resolution and a series of coarser resolutions.

3. Results
3.1. ACES—Anthropogenic Carbon Emissions System

We estimate a total annual fossil fuel carbon flux of 281.7 ± 24.3 Tg C (445.8 ± 38.5 Mg C km�2) across our
631,811 km2 study domain (Figure 1). The sector-specific uncertainty calculations described in section 2.1
were summed linearly to produce the overall magnitude uncertainties reported here. Within the northeast
U.S. domain, emissions from on-road transportation contributed 29% (81.7 ± 5.8 Tg C), electric power genera-
tion contributed 32% (90.1 ± 8.8 Tg C), industrial and commercial sources contributed 21.8% (63.3 ± 4.9 Tg C),
and residential energy consumption contributed 12.8% (37.1 ± 4.8 Tg C). Due to data limitations, it was not
possible to calculate uncertainties for all sectors contained in ACES; however, the reported uncertainties com-
prise >95% of emissions in the domain. In relative terms, the overall uncertainty in total ACES emissions
across the domain is ±8.6%.

We evaluated the share of emissions in each state of our domain that occurs within “urban” areas based on
the U.S. Census urbanized areas and urban clusters (UAs) boundaries (Figure 2). The urban shares of state
emissions are highly variable, ranging from 25 to 85% of total state emissions (100% when including the
District of Columbia), with a domain-wide urban emissions share of 57%. Across the 13 states in the domain,
residential and commercial buildings and the on-road sector consistently dominate urban emissions, but the
relative proportions vary considerably. Electric power generation is not typically a large urban emission
source as these facilities are often outside city centers (Providence, RI, being a notable exception). Within
urban areas we also observe significant differences in the dominant diurnal patterns of emissions (Figure S2).
For example, in NYC during the winter, downtown Manhattan has a diurnal emissions pattern dominated
by meteorology-driven building heating demand, whereas in parts of the outer boroughs such as Queens
daily emissions patterns are dominated by on-road sector emissions, which follow a recognizable morning
and evening bimodal peak (Figure S2).

3.2. Inventory Comparison

At the domain scale, we find that ACES and EDGAR estimates are the most similar, with EDGAR reporting
266.9 Tg C, only 5% less than ACES in aggregate. ODIAC is the next closest at 257.6 Tg C, 10% less than
ACES. FFDAS reports the lowest emissions for the domain, 227.7 Tg C, more than 20% less than ACES,
although some of this difference is likely due to FFDAS’ exclusion of some emitting sectors (in ACES those
sectors comprise ~4.3% of total emissions). Since each of the non-ACES inventories is based on national total
emissions estimates, the regional differences are also likely to be a result of differences in the regional shares
of the different spatial proxies used by each inventory to downscale these national totals. Despite the larger
differences in total emissions of ACES, ODIAC, and FFDAS, at subregional scales those inventories’ spatial
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patterns of emissions are more consistent than those of EDGAR (Figure 1). ODIAC and FFDAS show similar
spatial patterns, reflecting their common use of nightlights and power plant data sources (Oda &
Maksyutov, 2011; Asefi-Najafabady et al., 2014). However, EDGAR allocates a significant share of emissions
into the central cores of the region’s largest urban areas and also allocates higher emissions in rural areas
than the three other inventories (Figure 1). Most notably, EDGAR appears to distribute on-road emissions
much more homogenously across the domain than ACES or the other downscaled inventories. The
domain-wide coefficient of variation (CV) of emissions intensity for EDGAR line source emissions (on
road + railway) shows small declines with aggregation, from 0.93 at 10 km2 down to only 0.8 at 40 km2

(Table 1). By contrast, the CV of ACES line source emissions declines significantly with aggregation, from
6.6 at 1 km2 to 2.71 at 10 km2 and then down to 1.99 at 40 km2. The insensitivity of EDGAR line source
emissions intensity to spatial aggregation implies a relative lack of spatial variability in that EDGAR sector.

To compare all of the inventories at a consistent resolution, we aggregated ACES and ODIAC up to a 0.1° grid
to match the native resolutions of EDGAR and FFDAS. Figure 3 shows the absolute and relative grid cell-scale
differences between all four inventories for the domain. At 0.1° resolution, the mean grid cell RD is 120%. We
observe large values of RD (>100%) for almost half of all grid cells in the domain, and over 75% of all grid cells
have RDs >50%. The areas with the largest absolute differences are concentrated in the urban cores of the
major cities, along much of the Atlantic coast, and in the oil and gas intensive regions of western PA and

Table 1
Domain-Wide Coefficients of Variation (CV) for ACES and EDGAR by Sector Class

ACES EDGAR

Resolution All sectors Point Line Area All sectors Point Line Area

1 km2 34.72 81.61 6.60 5.44 - - - -
5 km2 7.65 16.90 3.37 3.99 - - - -
10 km2 4.38 8.83 2.71 3.44 3.73 6.54 0.93 4.78
20 km2 2.70 4.57 2.30 2.85 2.83 4.35 0.87 4.32
40 km2 2.05 2.76 1.99 2.65 2.28 2.82 0.80 3.76

Note. Aggregation from 1 km2 to coarser resolution grid scales reduces spatial variation in emissions at the domain scale,
lowering the CV. For ACES, the spatial variability of point source and line source emissions is the most sensitive to aggre-
gation, due to their inherently higher spatial heterogeneity. For EDGAR, line source emissions are notably homogenous
in their spatial distribution, with little changes to their CV even when scaled to 40 km2 grid resolution.

Figure 2. Share of FFCO2 emissions in each state that occur in census urbanized areas (UAs). For the whole domain, 57% of
emissions occur in UAs. At the state level, urban emission shares vary considerably, with the on-road and commercial/
industrial sectors showing the most variation in their relative shares of urban emissions.
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WV. The highly visible discrepancies in FFCO2 emissions in western PA and WV reflect the fact that none of
the three downscaled inventories are designed to capture the emission signature from the recent expansion
of oil and gas development across that region. For the state of PA, oil and gas sector emissions account for
almost 9% of state total emissions in ACES, with nearly all of those emissions occurring in the western third
of the state. Identifying themagnitude and spatial location of these emissions is vital to support regional miti-
gation efforts.

The urban areas with large discrepancies between inventories are also the areas with the highest overall
emissions, which is even more critical from a mitigation policy perspective. For the urban area grid cells
(based on the census UAs), the mean RD is 84%. For over one quarter of these urban grid cells the RDs range
from 100% to as high as 300%. The highest RD values are found in the grid cells in the largest urban areas in
the domain, which are again the areas with the largest concentrations of total emissions.

For the largest urban area in our domain, New York City, NY (NYC), we calculated the pixel-scale RD in emis-
sions across (1) all four inventories, (2) across only the downscaled inventories (ACES excluded), and (3) for
just the two high-resolution inventories (ACES and ODIAC) (Figures 4 and S4). The mean RD of NYC grid cells,
when all inventories are considered, is 92%. When ACES is excluded, the mean RD falls to 76%. The better
agreement when ACES is excluded is due to the inherent similarities of ODIAC and FFDAS, which use the
same source data and similar spatial scaling algorithms. At 1 km2 resolution, the RDs between ACES and
ODIAC are also large (Figure S4c), with a mean RD of 71% and an RD > 100% for over half of the grid cells.

Evaluating the three downscaled inventories relative to ACES, we find that FFDAS underestimates by 50% or
more across much of the core urban area (Figure S5a), while EDGAR overestimates, relative to ACES, by 75%
or more in both the urban core and in the surrounding suburbs (Figure S5b). When compared with ACES at
1 km2 resolution, ODIAC shows the largest observed differences in grid cells dominated by on-road emissions
(Figure S5c), as it underpredicts ACES by >75% in most of the grid cells containing major roads. At 10 km2

resolution (Figure S5d), there is considerable improvement in spatial agreement between ACES and
ODIAC, with the mean RD falling to 44.8%, and only one third of grid cells having RDs >50%.

3.3. Scale Sensitivity

Aggregating emissions to a coarser spatial grid tends to “smooth out” local gradients in emissions, as concen-
trated point and line sources are spatially averaged with lower intensity areal sources. To measure the impact

Figure 3. Uncertainty between regional-scale FFCO2 inventories at 0.1° resolution. (a) The absolute difference between the highest and lowest emissions reported in
each grid cell. (b) The relative difference (RD) in percent (absolute difference divided by mean emissions of each grid cell). Absolute differences are largest in
urban areas and in the oil and gas production regions of western Pennsylvania and West Virginia. Large RDs are also observed across most of the domain, with urban
areas and the oil and gas sector dominated regions also standing out. The large RD values observed in northern Maine, New York, and central Pennsylvania reflect
areas where the non-ACES inventories report zero emissions but ACES reports small but nonzero emissions.

Journal of Geophysical Research: Atmospheres 10.1002/2017JD027359

GATELY AND HUTYRA UNCERTAINTIES IN URBAN CARBON EMISSIONS 11,250



of spatial aggregation on FFCO2 gradients in our domain, we aggregated the ACES, ODIAC, EDGAR, and
FFDAS inventories to 5 km2, 10 km2, 20 km2, and 40 km2 resolutions. At each resolution we calculated the
within cell CV of emissions with respect to the distribution of the 1 km2 grid cell emissions (equation (S1)).
This within pixel CV provides a normalized estimate of the localized reduction in the spatial variation of
emissions that occurs when emissions are averaged to a coarser resolution. In general, grid cells with a
larger CV represent areas where spatial aggregation has “smoothed out” large gradients in local emissions,
for example, power plants surrounded by low-emissions rural areas, or large freeways passing through
low-density suburban towns.

For ACES and EDGAR we calculated CVs for total emissions and for two sectors: residential and on-road emis-
sions (Figures 5a–5c). For ACES, the distribution of grid cell CVs becomes increasingly right skewed and pla-
tykurtic with aggregation, with the mean CV increasing from 1.7 at 10 km2 to 8.1 at 40 km2. This “widening” of
the distribution is most pronounced for total FFCO2 emissions; for the residential sector, the mean CV
increases from 0.8 to 2.6, and for the on-road sector from 2.0 to 3.8 (Figures 5b and 5c). For EDGAR we

Figure 4. Comparison of emissions inventories for the New York City, NY, metropolitan area at 0.1° scales (ODIAC not shown). Many of the coastal grid cells in FFDAS
contain values of zero emissions, most notably in upper Manhattan. EDGAR concentrates emissions in the core of the city, while ACES and FFDAS are higher in
the suburban areas. The bottom right panel shows percent relative difference (RD) between all inventories (ODIAC included). Themean RD for the area shown is 83%,
with much of the core urban area showing RDs of greater than 100%.
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found a significantly smaller change in the grid cell CVs, with mean CV increasing from 0.5 to 1.3. As with
ACES, we found that EDGAR total emissions and residential sector emissions also become more right
skewed and platykurtic as grid cell size increases. EDGAR on-road CVs (Figure 5c) are tightly distributed
with a long, fat right tail, and a mean and standard deviation of only 1.4 and 0.7, respectively, at 40 km2.
This pattern suggests that the scaling factor used to distribute EDGAR on-road emissions is very scale
invariant, that is, highly uniform. This is in sharp contrast to the ACES on-road emissions, which are
spatially assigned to a national road network that shows considerable spatial variation in areal density
(Gately et al., 2015).

Analysis of the cumulative share of total emissions versus grid cell emissions intensity (FFCO2 per square kilo-
meter) for ACES (Figures 5d–5f) show that the residential sector is least sensitive to aggregation, while for
on-road and total emissions, aggregation to 10 km2 or coarser significantly shifts the cumulative distribution
of emissions. In general, aggregation to coarser grid cell size tends to reduce areal emissions intensity, as
large emissions sources with small spatial extents, such as roads and power plants, are combined with lower
intensity area sources, such as buildings. This effect is visible in all of the cumulative distribution plots shown
in Figures 5d–5f. This shift is clearly visible for the ACES total emissions (Figure 5d), as the maximum emis-
sions intensity declines by almost 2 orders of magnitude from 4,415 Gg C km�2 at 1 km2 resolution to only
44.6 Gg C km�2 at 10 km2 resolution. At 10 km2, ACES grid cells with total emissions intensities of

Figure 5. Distribution of within grid cell coefficient of variation (CV) of FFCO2 for different grid resolutions. CV values reflect the within cell variation in emissions
that is smoothed out by spatial aggregation. (a) For ACES total emissions, the mean CV increases from 1.7 to 8.1 going from 10 km2 to 40 km2 resolutions.
The increase in mean CV with aggregation is less for the (b) residential sector (0.8 to 2.6) than for the (c) on-road sector (2.0 to 3.8). For EDGAR, the CV distribution
is less affected by aggregation below 40 km2, with the on-road sector in particular showing almost no change in mean CV (0.45 to 0.69, Figure 5c). (d–f) Changes
in the cumulative distributions of ACES grid cell emissions intensity due to spatial aggregation. The CDF of ACES residential emissions is least affected by
aggregation (Figure 5e), compared to total emissions (Figure 5d) and on-road emissions (Figure 5f).
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5 Gg C km�2 or less comprise over 60% of total emissions, while at 1 km2 only 40% of emissions come from
grid cells emitting 5 Gg C km�2 or less, and 40% of emissions come from grid cells with emissions intensity
larger than 44 Gg C km�2. All of these higher-intensity emissions fluxes are smoothed out by aggregation
from 1 km2 to 10 km2. At coarser resolutions emissions intensities are even further reduced, with over 90%
of emissions at 20 km2 originating from cells at 10 Gg C km�2 or less (Figure 5d). On-road emissions show
a similar shift in the distribution of emissions intensities going from 1 km2 to 10 km2, but further
aggregation does not shift the cumulative emissions distribution as drastically as with total emissions, with
similarly shaped distributions at 20 km2 and 40 km2 resolutions (Figure 5f). Residential emissions are the
least affected by aggregation, with emissions intensities staying consistent for grid cells comprising over
80% of emissions at all scales (Figure 5e). These results are consistent with the inherent spatial distribution
of these sectors: roads are both more spatially compact and more heterogeneously distributed across the
landscape than residential buildings, and thus, decreasing grid resolution tends to, on average, incorporate
more “nonroad” areas than “nonresidential” areas into a grid cell.

Overall, spatial aggregation reduces the domain-wide CVs of emissions while improving the spatial correla-
tions between the different inventories and between inventory emissions and population (Tables 1–3). For
ACES, the domain-wide CV of total emissions decreases by nearly an order of magnitude between 1 km2

and 10 km2 resolutions, from 34.7 to 4.4. Point source and line source emissions exhibit the largest change
in spatial variability with aggregation, due to their inherent spatial heterogeneity. For EDGAR both the
absolute and relative decreases in total emissions CV are much smaller, from 5.0 to 2.3. EDGAR point source
emissions also show large reductions in CV with aggregation, but EDGAR on-road emissions exhibit notably
low spatial variability, even at fine resolutions. At 10 km2 and up, EDGAR point and area source emissions
have similar CVs to ACES.

To evaluate the overall correlation between each inventory and ACES, we calculated domain-wide spatial
correlations for multiple grid resolutions (Table 2). ODIAC shows the best correlation with ACES at all spatial
scales. Correlations with EDGAR and FFDAS are relatively low at 10 km2, although when only area source
emissions are considered correlations improve.

Population density is often used as a spatial proxy for emissions (Andres et al., 2014; Asefi-Najafabady et al.,
2014; Olivier & Janssens-Maenhout, 2012), although it has been shown that the relationship between emis-
sions and population is not spatially homogenous (Hogue et al., 2016), and for sectors like on-road emissions
is nonlinear at regional and local scales (Gately et al., 2015). Since none of the emissions estimates in ACES use
population as a spatial proxy, we were able to compare emissions to an independent measure of population
density (Oak Ridge National Laboratory, 2014) at multiple spatial scales (Table 3). We also compute correla-
tions with population for the other inventories. For the whole domain at 1 km2, the Pearson correlation
between ACES total emissions and population is only 0.06. Examining individual source sectors by their inher-
ent spatial patterns (point, line, and area sources) for ACES, EDGAR, and FFDAS, we observe that area sources
have the strongest correlations with population (0.96, 0.93, and 0.74, respectively, at 10 km2 resolution). At
resolutions below 10 km2 ACES line source emissions have low correlations with population, while point
source emissions are poorly correlated at all spatial scales for all inventories (r< 0.37 at 40 km2). The low cor-
relations of point and line sources with population at higher spatial resolutions likely contribute significantly
to the large discrepancies observed between ACES and the downscaled inventories.

Table 2
Pearson Correlations (r) Between ACES and Other Inventories as a Function of Grid Spatial Resolution

Grid ODIAC EDGAR FFDAS EDGAR point FFDAS point EDGAR area FFDAS area EDGAR line

1 km 0.50 - - - - - - -
5 km 0.84 - - - - - - -
10 km 0.87 0.66 0.69 0.53 0.60 0.90 0.72 0.77
20 km 0.90 0.84 0.84 0.71 0.75 0.94 0.77 0.84
40 km 0.95 0.93 0.93 0.85 0.85 0.94 0.85 0.87

Note. ODIAC exhibits the best correlation with ACES at all resolutions. Correlations are generally low for EDGAR and FFDAS at 10 km2 but improve at coarser
resolutions. Line and area source emissions have higher correlations at high resolution (r > 0.7 at 10 km2), but point source emissions only correlate well at
20 km2 and above.
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4. Discussion

Our comparison of ACES with three of the most commonly used global FFCO2 inventories shows that even at
broad regional scales the overall uncertainty in emissions estimates is as high as 20% (Figure 1). While the
ACES inventory itself has a relatively modest total uncertainty of ~8.6%, the overall disagreement between
ACES and the major global inventories implies that this uncertainty may be somewhat larger. Two inventories
constructed from the same data sources (i.e., ODIAC and FFDAS) report different regional emissions totals
(Δ12%) for our domain, emphasizing how minor differences in included source sectors and the downscaling
algorithms can produce significant differences at subnational scales. These results add additional support to
the growing consensus that the overall uncertainties in FFCO2 inventories are larger than were initially
thought (Andres et al., 2014; Ciais et al., 2014; Gately et al., 2015; Miller & Michalak, 2016; Oda et al., 2015).

The magnitude of these uncertainties threatens to undermine the confidence of state and local policymakers
to accurately monitor and detect trends in emissions, especially at urban scales. Without this confidence in
the accuracy of inventories, it is then difficult to assess the performance of any mitigation policies that are
implemented, which reduces accountability and can prevent the objective evaluation of whether declared
climate action targets are beingmet. Even in countries with highly developed energy statistics and data infra-
structure, the data that underpin emissions estimates are typically published by just a few government
sources, with no reported estimates of potential errors. Nonetheless, these data are often taken at face value,
as they are considered the most accurate estimates of the total amounts of fossil fuels burned, and by proxy,
the total amounts of CO2 released from their combustion. However, recent research has suggested that
sector-specific and subnational uncertainties are considerably higher than previously believed. Gurney
et al. (2016) found significant differences in the total annual CO2 emissions reported for the same power
plants by two different U.S. agencies (monthly differences >13% for one fifth of U.S. power plants). We con-
firm that result in this study, findingmean differences of almost 10% between eGRID and GHGRP power plant
emissions within our ACES domain. Hogue et al. (2016) found that for large parts of the eastern U.S., the spa-
tial uncertainty of point source locations produces uncertainties as high as 25% of the total emissions in each
1° grid cell. Hogue et al. (2016) also showed that downscaling national emissions to 1° grid cells using a single
national value for per capita emissions produced mean absolute biases of 150% compared to emissions
downscaled using state-level per capita emissions values.

At local scales, the downscaled inventories vary widely in their estimates, as well as deviating significantly
from our bottom-up inventory. For the NYC metropolitan area, the mean total emissions of the four inven-
tories is 34.3 Tg C, but the range of estimates varies from 26.5 Tg C (FFDAS) to 41.4 Tg C (EDGAR), a represen-
tation uncertainty of almost 28 Tg C, equivalent to 80% of the metropolitan area’s mean emissions. ACES and
ODIAC emissions are near the mean, (38.2 Tg C and 31.1 Tg C, respectively) but also show the largest pixel-
level differences when the two inventories are compared directly at their native 1 km2 resolution. These
deviations appear to reflect the spatial patterns in source activity that are well represented in ACES, particu-
larly line source emissions from major roads, but that are not captured by the population- and nightlights-
based downscaling in ODIAC. While ODIAC and the other global inventories were not designed to be used
for this type of urban analysis, they have been applied to a wide range of urban- and regional-scale modeling
and policy analyses (e.g., Brioude et al., 2013; Hakkarainen et al., 2016; Marcotullio et al., 2012; Sarzynski, 2012;
Schneising et al., 2013; Shiga et al., 2014; Tohjima et al., 2014; Turnbull et al., 2011; Vogel et al., 2012; Wunch
et al., 2009; Yadav et al., 2016). Indeed, the high-resolution grids of these inventories (1–10 km) appear to

Table 3
Pearson Correlation (r) Between Each Inventory’s FFCO2 Emissions and the Average Daytime Population Reported by the LandScan Population Database (Oak Ridge
National Laboratory, 2014)

Grid (km) ACES ODIAC EDGAR FFDAS ACES point EDGAR point FFDAS point ACES area EDGAR area FFDAS area ACES line EDGAR line

1 0.06 0.04 - - 0.01 - - 0.90 - - 0.24 -
5 0.27 0.20 - - 0.09 - - 0.96 - - 0.55 -
10 0.50 0.36 0.66 0.47 0.19 0.30 0.20 0.96 0.93 0.74 0.71 0.63
20 0.68 0.53 0.76 0.56 0.27 0.33 0.23 0.97 0.97 0.78 0.81 0.67
40 0.77 0.66 0.80 0.69 0.36 0.37 0.27 0.95 0.98 0.87 0.89 0.74

Note. Overall correlations are low for total emissions at resolutions below 20 km2. Area source emissions show the best correlations with population, with ACES
showing the strongest correlation at finer spatial resolutions. Line source emissions show only moderate correlations below 20 km2 resolution.
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imply a fidelity at these local scales that is not necessarily evident. The large uncertainties we report here
serve as a strong caution to future researchers that these inventories do not appear to provide accurate
representations of FFCO2 emissions at subnational or urban scales.

Like many cities worldwide, New York City has committed to ambitious emissions reductions targets: 80%
below 2005 levels by 2050, with a 40% reduction by 2030 and a 30% reduction in building emissions by
2025 (City of New York, 2015). Bottom-up inventories performed by the city estimated emissions equivalent
to 14.8 Tg C in 2010 and 14.6 Tg C in 2011 (City of New York, 2011; City of New York, 2012). When we sum
emissions for 2011 from ACES and the other inventories using only the grid cells covering New York City
proper, ACES reports 13.6 Tg C and ODIAC reports 8.6 Tg C. For the year 2010, EDGAR reports 15.8 Tg C, while
FFDAS reports 5.9 Tg C. The largest deviations from the local NYC inventory, ODIAC (�41%) and FFDAS
(�60%), are the two inventories that use only power plants, population, and nightlights as spatial proxies.
ACES and EDGAR both estimate emissions to within 1 Tg C of the totals reported by the NYC inventory,
equivalent to roughly a ± 7% mismatch. While ±7% is still a significant difference, it is considerably smaller
than the targeted reductions in NYC’s climate action plan (40%–80%) and is on par with the overall margin
of error estimated for ACES (8.6%). The single-year discrepancies of >40% observed with the ODIAC and
FFDAS inventories are comparable in magnitude to the emissions reduction targets that NYC has established
for the next 20–40 years (City of New York, 2015). Accurately monitoring emissions reductions on shorter time
scales (i.e., annually) requires a significantly lower level of representation uncertainty in the inventory esti-
mates than is provided by the downscaled global products, compared to the bottom-up methods used by
ACES and by the City of New York’s in-house inventory. We further evaluate the performance of ACES and
the other inventories against independent bottom-up estimates by comparing them with locally produced
inventories published by 11 other cities across the region (Figure S7). We find that the ACES estimates are
most similar to the city-reported values (mean RD of 33%, compared to 57%, 65%, and 78% for ODIAC,
EDGAR, and FFDAS, respectively), confirming that ACES provides more accurate representations of FFCO2

emissions at urban scales than the downscaled global inventories.

Beyond NYC, other urban-scale efforts to reduce emissions of CO2 from anthropogenic sources will have a
similar need for locally derived estimates of emissions, but not all of these cities and municipalities will have
the resources necessary to develop their own custom bottom-up inventories based on local data. ACES can
provide a valuable benchmark of emissions for these small- and medium-size cities, and its regionally
consistent methodology allows for the direct comparison of emissions across all cities and urban areas in
the domain.

Policymakers at all levels of government continue to strive to understand the underlying drivers of emissions
from different type of human activities, so as to design efficient policies that target specific aspects of eco-
nomic, administrative, or technologic processes. For example, increasing the density of urban populations
through residential and commercial development and urban planning is widely seen as a positive effort
toward reducing per capita emissions in large cities (Jones & Kammen, 2014; National Research Council,
2009). However, in order to evaluate the emissions impacts of these sorts of policies at urban scales, it is
necessary to use estimates of emissions that do not rely on population for their spatial distribution.
Although at coarser scales population is a good predictor of emissions, we have shown here that this relation-
ship is not sustained at urban scales. In particular, our results suggest that it is largely the low correlation of
population with point and line source emissions (Table 3) that drives the uncertainty between inventories at
local scales. This uncertainty is most pronounced for the large urban areas, where the low correlations with
point and line source emissions may explain the significant spatial mismatches observed between the
ACES bottom-up inventory and the population-downscaled global inventories (FFDAS and EDGAR) in cities
such as NYC. Inventories like ACES that are constructed for the most part independently from local popula-
tion data will allow policymakers and researchers to directly examine the functional relationships between
emissions and spatial covariates, such as population density, so as to develop effective urban planning poli-
cies to reduce future emissions.

A U.N. report on global trends in urbanization (United Nations, 2012) finds that urban areas are responsible
for as much as 70% of global FFCO2 emissions. Although this is a very widely cited statistic, the report, in fact,
estimates that direct emissions from urban areas (emissions actually occurring within the areas classified as
urban as opposed to external emissions associated with power generation or imported goods consumed

Journal of Geophysical Research: Atmospheres 10.1002/2017JD027359

GATELY AND HUTYRA UNCERTAINTIES IN URBAN CARBON EMISSIONS 11,255



within urban areas) actually comprise only 40% of emissions globally. The report also notes that the uncer-
tainty in these estimates is potentially very large, as there exists no common standard for classifying land
as urban, and even for calculations of “direct” emissions different FFCO2 inventories will vary in what is
included in terms of source sectors. Looking across the 13 states in our northeastern U.S. domain, variations
in urban populations, urban extent, and dominant economic and industrial activities results in very different
state-level emissions profiles. Although 57% of emissions in the domain occur in Census Urbanized Areas, five
states have less than half of their emissions occurring in urban areas, while six others contain more than 75%
urban emissions (Figure 2). For all states, the on-road sector dominates emissions at both urban and state
levels, but the relative contributions of industrial activity and electric power generation vary widely across
the region. Vermont for example has almost zero emissions from electric power and less than 7% from indus-
trial activities (Figure S3). In contrast, over 60% of Pennsylvania’s emissions come from power generation and
industrial activity, with oil and gas production alone accounting for 9% of the state’s total CO2 emissions. The
most urbanized states (NY, NJ, CT, RI, and DC) all have emissions profiles dominated by transportation and
buildings, with less than a third of their emissions coming from the industrial and electric power sectors.
From a policy perspective, these varying sectoral emissions profiles highlight the necessity of developing
sector-specific mitigation plans that focus on reducing emissions from the most important emitting sectors
in each state or urban area.

The growing role of urban and state governments as leaders on U.S. climate policy underscores the urgent
need to reduce uncertainties in local emissions estimates. While the development of high-resolution gridded
inventories such as ACES has heretofore been driven mainly to support atmospheric modeling of the carbon
cycle, they are increasingly being recognized as providing considerable value to policymakers at subnational
scales (Duren & Miller, 2012; Gurney et al., 2015; Hutyra et al., 2014). In particular, the within -state and within
-city spatial patterns of emissions provide information about internal variability in emissions that is almost
universally absent from the official emissions inventories conducted by states and municipal governments.
Many cities and states have climate action plans that set sector-specific goals for emissions reductions.
While for some sectors, such as power generation, it may be sufficient to implement mitigation policies that
are uniform across an urban- or state-scale spatial domain, for sectors such on-road or buildings (residential/
commercial/industrial), it is expected that policies will need to be sensitive to the spatial variations of the
emissions-generating activities in these sectors (i.e., traffic patterns and vehicle activity across a range of road
types and sizes, energy consumption across a range of building types, and neighborhood population densi-
ties). A bottom-up inventory such as ACES that resolves these spatial variations in emissions using the most
relevant and resolved spatial proxies (such as the road-level traffic volumes used in DARTE) provides urban
governments with the means to benchmark existing emissions patterns, to identify locations for specific pol-
icy targeting, and the ability to evaluate changes in emissions over time within the city.

In this study we have demonstrated that the existing global-scale inventories of FFCO2 emissions are clearly
not suitable for regional- or urban-scale emissions validation, planning analysis, or mitigation policy decision
support, despite their frequent use in such applications. Large discrepancies at regional and local scales
confirm that global inventories do not accurately capture the underlying spatiotemporal patterns of source
activities that drive regional and urban emissions. Bottom-up inventories, such as ACES, offer the necessary
spatial fidelity to identify the dominant, sector-specific sources of carbon emissions across these highly
heterogeneous landscapes; this information will be critical to provide data-driven support for policymakers
within a robust national carbon monitoring system.

5. Conclusions and Future Research Needs

Large uncertainties among existing FFCO2 inventories present a significant obstacle for the development and
implementation of emissions reductions strategies at all levels of government. These uncertainties are parti-
cularly critical at urban scales, as over 600 cities globally have already signed on to the Global Covenant of
Mayors, which commits them to significant reductions in their local greenhouse gas emissions. For the
United States, the only currently available bottom-up inventory of FFCO2 emissions that covers more than
a single urban area is the Vulcan Project (Gurney et al., 2009), which only reports emissions for the year
2002. While groundbreaking at the time of its development, Vulcan is now over a decade out of date, and
though it is still widely used, it no longer reflects the state of current U.S. emissions (Figure S8). The ACES
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inventory provides up-to-date estimates of surface carbon fluxes at a higher spatial resolution than Vulcan for
one of the most emissions intensive regions of the U.S., with a consistent methodology that allows for urban-
scale emissions benchmarking and comparison across all municipalities and states within the ACES domain.

In the absence of an up-to-date national-level inventory with sufficient detail for their purposes, many cities
and states with the need to quantify their emissions have previously been forced to create their own bespoke
inventories. While the largest U.S. cities may have sufficient resources to perform this task in house, many
smaller- and medium-size cities lack the resources or expertise to generate FFCO2 estimates of the necessary
quality. Previously, where the interests of the local research community have aligned, new urban-scale inven-
tories have been developed for cities such as Los Angeles, CA, Salt Lake City, UT, Indianapolis, IN, and Boston,
MA (Decina et al., 2016; Feng et al., 2016; Gately et al., 2017; Gurney et al., 2012; Patarasuk et al., 2016).
However, all of these efforts have relied on different methodologies and data sources and are limited to small
geographic domains. Evaluating the uncertainty in these individual estimates has also been difficult, as they
cannot be compared to a current national or regional inventory that has been constructed in a consistent
fashion from similar local-scale data. We have shown that when compared to ACES, downscaled global
FFCO2 inventories do not accurately capture the spatial patterns of emissions at urban scales. Leveraging
the increasingly available sources of local data on emissions generating activities can reduce these large
uncertainties, and the ACES inventory provides the framework for a consistent, frequently updated, high-
resolution carbon monitoring system for the United States.

Given the rapid development of inverse atmospheric modeling tools, satellite observations, and a strong poli-
tical will at regional and urban scales, the time is ripe for next-generation carbon monitoring systems. Future
operationalization of bottom-up gridded inventories within a national CMS will require improvements across
many additional government and institutional systems in order to streamline data production and acquisi-
tion. An effective CMS should integrate (1) data from the rapidly growing network of surface-, air-, and
space-based atmospheric greenhouse gas measurements, (2) state-of-the-art continental and mesoscale
atmospheric transport models, and (3) regularly updated, sector-specific, high-resolution estimates of
FFCO2 emissions. Together, these three major components of a CMS can provide vital data on emissions pat-
terns and trends to both the research and policy communities from the national down to the local scale.
Fundamental actions on climate policy in the United States over the next decade will be critically affected
by whether or not the research and policy communities can succeed in developing and operationalizing a
robust national carbon monitoring system. Reductions in inventory uncertainty, as demonstrated by ACES,
will play a key role in improving the quality of this national CMS.

References
Andres, R. J., Marland, G., Fung, I., & Matthews, E. (1996). A 1° × 1° distribution of carbon dioxide emissions from fossil fuel consumption and

cement manufacture, 1950–1990. Global Biogeochemical Cycles, 10(3), 419–429. https://doi.org/10.1029/96GB01523
Andres, R. J., Boden, T. a., Bréon, F. M., Ciais, P., Davis, S., Erickson, D., … Treanton, K. (2012). A synthesis of carbon dioxide emissions from

fossil-fuel combustion. Biogeosciences, 9(5), 1845–1871. https://doi.org/10.5194/bg-9-1845-2012
Andres, R. J., Boden, T. A., & Higdon, D. (2014). A new evaluation of the uncertainty associated with CDIAC estimates of fossil fuel carbon

dioxide emission. Tellus B, 66(1), 23616. https://doi.org/10.3402/tellusb.v66.23616
Asefi-Najafabady, S., Rayner, P. J., Gurney, K. R., McRobert, A., Song, Y., Coltin, K., … Baugh, K. (2014). A multiyear, global gridded fossil fuel

CO2 emission data product: Evaluation and analysis of results. Journal of Geophysical Research: Atmospheres, 119, 10,213–10,231. https://
doi.org/10.1002/2013JD021296

Boden, T. A., Marland, G., & Andres, R. J. (2017). Global, Regional, and National Fossil-Fuel CO2 Emissions. Carbon Dioxide Information
Analysis Center. Oak Ridge, Tenn., U.S.A: Oak Ridge National Laboratory, U.S. Department of Energy. https://doi.org/10.3334/CDIAC/
00001_V2017

Brioude, J., Angevine, W. M., Ahmadov, R., Kim, S. W., Evan, S., McKeen, S. A.,… Trainer, M. (2013). Top-down estimate of surface flux in the Los
Angeles basin using a mesoscale inverse modeling technique: Assessing anthropogenic emissions of CO, NOx and CO2 and their impacts.
Atmospheric Chemistry and Physics, 13(7), 3661–3677. https://doi.org/10.5194/acp-13-3661-2013

Ciais, P., Dolman, A. J., Bombelli, A., Duren, R., Peregon, A., Rayner, P. J., … Obersteiner, M. (2014). Current systematic carbon-cycle
observations and the need for implementing a policy-relevant carbon observing system. Biogeosciences, 11(13), 3547–3602. https://doi.
org/10.5194/bg-11-3547-2014

City of New York (2011). Inventory of New York City Greenhouse Gas Emissions, September 2011, by Jonathan Dickinson and Andrea Tenorio.
New York, NY: Mayor’s Office of Long-Term Planning and Sustainability.

City of New York (2012). Inventory of New York City greenhouse gas emissions, December 2012, by Jonathan Dickinson, Jamil Khan, Douglas
Price, Steven A. Caputo, Jr. and Sergej Mahnovski. Mayor’s Office of Long-Term Planning and Sustainability, New York, NY.

City of New York (2015). New York City’s Roadmap to 80 × 50. New York: Mayor’s Office of Long-Term Planning and Sustainability.
Decina, S. M., Hutyra, L. R., Gately, C. K., Getson, J. M., Reinmann, A. B., Short Gianotti, A. G., & Templer, P. H. (2016). Soil respiration contributes

substantially to urban carbon fluxes in the greater Boston area. Environmental Pollution, 212, 433–439. https://doi.org/10.1016/
j.envpol.2016.01.012

Journal of Geophysical Research: Atmospheres 10.1002/2017JD027359

GATELY AND HUTYRA UNCERTAINTIES IN URBAN CARBON EMISSIONS 11,257

Acknowledgments
We thank Jackie Getson for technical
assistance in the creation of this
inventory, along with Andrew Trlica. We
are also grateful for useful discussions
and feedback from Kevin Gurney, Ian
Sue Wing, and Andrew Reinmann. This
manuscript was greatly improved by
the reviews of Tomohiro Oda. This
research was supported primarily by the
National Aeronautics and Space
Administration Carbon Monitoring
System program (grants NNH13CK02C
and NNX16AP23G) with additional
support from National Oceanic and
Atmospheric Administration (NOAA
NA14OAR4310179). The data reported
in this paper will be publically available
at the Oak Ridge Data Active Archive
Center (https://doi.org/10.3334/
ORNLDAAC/1501).

https://doi.org/10.1029/96GB01523
https://doi.org/10.5194/bg-9-1845-2012
https://doi.org/10.3402/tellusb.v66.23616
https://doi.org/10.1002/2013JD021296
https://doi.org/10.1002/2013JD021296
https://doi.org/10.3334/CDIAC/00001_V2017
https://doi.org/10.3334/CDIAC/00001_V2017
https://doi.org/10.5194/acp-13-3661-2013
https://doi.org/10.5194/bg-11-3547-2014
https://doi.org/10.5194/bg-11-3547-2014
https://doi.org/10.1016/j.envpol.2016.01.012
https://doi.org/10.1016/j.envpol.2016.01.012
https://doi.org/10.3334/ORNLDAAC/1501
https://doi.org/10.3334/ORNLDAAC/1501


Duren, R. M., & Miller, C. E. (2012). Measuring the carbon emissions of megacities. Nature Climate Change, 2(8), 560–562. https://doi.org/
10.1038/nclimate1629

Engelen, R. J., Denning, A. S., & Gurney, K. R. (2002). On error estimation in atmospheric CO2 inversions. Journal of Geophysical Research,
107(D22), 4635. https://doi.org/10.1029/2002JD002195

Federal Highway Administration (2017). Highway Performance Monitoring System Field Manual, Chapter 6. Washington, DC: US Department of
Transportation. Retrieved from https://www.fhwa.dot.gov/policyinformation/hpms/fieldmanual/

Feng, S., Lauvaux, T., Newman, S., Rao, P., Ahmadov, R., Deng, A., … Yung, Y. L. (2016). Los Angeles megacity: A high-resolution land–
atmosphere modelling system for urban CO2 emissions. Atmospheric Chemistry and Physics, 16(14), 9019–9045. https://doi.org/10.5194/
acp-16-9019-2016

Gately, C. K., Hutyra, L. R., Wing, I. S., & Brondfield, M. N. (2013). A bottom up approach to on-road CO2 emissions estimates: Improved spatial
accuracy and applications for regional planning. Environmental Science & Technology, 47(5), 2423–2430. https://doi.org/10.1021/
es304238v

Gately, C. K., Hutyra, L. R., & Sue Wing, I. (2015). Cities, traffic, and CO2: A multidecadal assessment of trends, drivers, and scaling relationships.
Proceedings of the National Academy of Sciences, 112(16), 4999–5004. https://doi.org/10.1073/pnas.1421723112

Gately, C. K., Hutyra, L. R., Peterson, S., & Sue Wing, I. (2017). Urban emissions hotspots: Quantifying vehicle congestion and air pollution using
mobile phone GPS data. Environmental Pollution, 229, 496–504. https://doi.org/10.1016/j.envpol.2017.05.091

Geels, C., Doney, S. C., Dargaville, R., Brandt, J., & Christensen, J. H. (2004). Investigating the sources of synoptic variability in atmospheric CO2

measurements over the Northern Hemisphere continents: A regional model study. Tellus B, 56(1), 35–50. https://doi.org/10.3402/tellusb.
v56i1.16399

Global Covenant of Mayors for Climate and Energy (2016), http://www.covenantofmayors.eu/about/covenant-of-mayors_en.html
Gregg, J. S., Andres, R. J., & Marland, G. (2008). China: Emissions pattern of the world leader in CO2 emissions from fossil fuel consumption and

cement production. Geophysical Research Letters, 35, L08806. https://doi.org/10.1029/2007GL032887
Gregg, J. S., Losey, L. M., Andres, R. J., Blasing, T. J., & Marland, G. (2009). The temporal and spatial distribution of carbon dioxide emissions

from fossil-fuel use in North America. Journal of Applied Meteorology and Climatology, 48(12), 2528–2542. https://doi.org/10.1175/
2009JAMC2115.1

Gurney, K. R., Law, R. M., Denning, A. S., Rayner, P. J., Baker, D., Bousquet, P.,… Yuen, C.-W. (2003). TransCom 3 CO2 inversion intercomparison:
1. Annual mean control results and sensitivity to transport and prior flux information. Tellus B, 55(2), 555–579. https://doi.org/10.3402/
tellusb.v55i2.16728

Gurney, K. R., Chen, Y. H., Maki, T., Kawa, S. R., Andrews, A., & Zhu, Z. X. (2005). Sensitivity of atmospheric CO2 inversions to seasonal and
interannual variations in fossil fuel emissions. Journal of Geophysical Research, 110, D10308. https://doi.org/10.1029/2004JD005373

Gurney, K., Mendoza, D., Zhou, Y., Fisher, M., Miller, C., Geethakumar, S., & De La Rue Dy Can, S. (2009). High resolution fossil fuel combustion
emission fluxes for the United States. Environmental Science & Technology, 43(14), 5535–5541. https://doi.org/10.1021/es900806c

Gurney, K., Mendoza, D., Zhou, Y., Fisher, M., Miller, C., Geethakumar, S., & De La Rue Dy Can, S. (2010). Vulcan science methods documen-
tation, version 2.0. Retrieved from http://vulcan.project.asu.edu/pdf/Vulcan.documentation.v2.0.online.pdf, (Accessed on September 1,
2015).

Gurney, K. R., Razlivanov, I., Song, Y., Zhou, Y., Benes, B., & Abdul-Massih, M. (2012). Quantification of fossil fuel CO2 emissions on the
building/street scale for a large U.S. City. Environmental Science & Technology, 46(21), 12,194–12,202. https://doi.org/10.1021/es3011282

Gurney, K. R., Romero-Lankao, P., Seto, K. C., Hutyra, L. R., Duren, R. M., Kennedy, C.,… Sperling, J. (2015). Track urban emissions on a human
scale. Nature, 525(7568), 179–181. https://doi.org/10.1038/525179a

Gurney, K. R., Huang, J., & Coltin, K. (2016). Bias present in US federal agency power plant CO2 emissions data and implications for the US
clean power plan. Environmental Research Letters, 11(6), 64005. https://doi.org/10.1088/1748-9326/11/6/064005

Hakkarainen, J., Ialongo, I., & Tamminen, J. (2016). Direct space-based observations of anthropogenic CO2 emission areas from OCO-2.
Geophysical Research Letters, 43(21), 11,400–11,406. https://doi.org/10.1002/2016GL070885

Hardiman, B. S., Wang, J. A., Hutyra, L. R., Gately, C. K., Getson, J. M., & Friedl, M. A. (2017). Accounting for urban biogenic fluxes in regional
carbon budgets. Science of the Total Environment, 592, 366–372. https://doi.org/10.1016/j.scitotenv.2017.03.028

Hogue, S., Marland, E., Andres, R. J., Marland, G., & Woodard, D. (2016). Uncertainty in gridded CO2 emissions estimates. Earth’s Future, 4(5),
225–239. https://doi.org/10.1002/2015EF000343

Hutchins, M. G., Colby, J. D., Marland, G., & Marland, E. (2016). A comparison of five high-resolution spatially-explicit, fossil-fuel, carbon
dioxide emission inventories for the United States. Mitigation and Adaptation Strategies for Global Change, 22(6), 1–26.

Hutyra, L. R., Duren, R., Gurney, K. R., Grimm, N., Kort, E. A., Larson, E., & Shrestha, G. (2014). Urbanization and the carbon cycle: Current
capabilities and research outlook from the natural sciences perspective. Earth’s Future, 2(10), 473–495. https://doi.org/10.1002/
2014EF000255

Intergovernmental Panel on Climate Change (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the
Fifth Assessment Report of the Intergovernmental Panel on Climate Change, In T. F. Stocker, et al. (Eds.), (1535 pp.). Cambridge, U. K., and
New York: Cambridge University Press. https://doi.org/10.1017/CBO9781107415324

Jones, C., & Kammen, D. M. (2014). Spatial distribution of U.S. household carbon footprints reveals suburbanization undermines greenhouse
gas benefits of urban population density. Environmental Science & Technology, 48(2), 895–902. https://doi.org/10.1021/es4034364

Lauvaux, T., Miles, N. L., Deng, A., Richardson, S. J., Cambaliza, M. O., Davis, K. J., … Wu, K. (2016). High-resolution atmospheric inversion of
urban CO2 emissions during the dormant season of the Indianapolis flux experiment (INFLUX). Journal of Geophysical Research:
Atmospheres, 121, 5213–5236. https://doi.org/10.1002/2015JD024473

Macknick, J. (2014). Energy and CO2 emission data uncertainties. https://doi.org/10.4155/CMT.11.10
Marcotullio, P. J., Sarzynski, A., Albrecht, J., & Schulz, N. (2012). The geography of urban greenhouse gas emissions in Asia: A regional analysis.

Global Environmental Change, 22(4), 944–958. https://doi.org/10.1016/j.gloenvcha.2012.07.002
Marland, G., Rotty, R. M., & Treat, N. L. (1985). CO2 from fossil fuel burning: Global distribution of emissions. Tellus, 37B(4–5), 243–258. https://

doi.org/10.1111/j.1600-0889.1985.tb00073.x
McDonald, B., McBride, Z., Martin, E. W., & Harley, R. (2014). A high-resolution mapping of motor vehicle carbon dioxide emissions. Journal of

Geophysical Research: Atmospheres, 119, 5283–5298. https://doi.org/10.1002/2013JD021219
McKain, K., Wofsy, S. C., Nehrkorn, T., Eluszkiewicz, J., Ehleringer, J. R., & Stephens, B. B. (2012). Assessment of ground-based atmospheric

observations for verification of greenhouse gas emissions from an urban region. Proceedings of the National Academy of Sciences, 109(22),
8423–8428. https://doi.org/10.1073/pnas.1116645109

Mckain, K., Down, A., Raciti, S. M., Budney, J., Hutyra, L. R., & Floerchinger, C. (2014). Methane emissions from natural gas infrastructure and
use in the urban region of Boston, Massachusetts. Proceedings of the National Academy of Sciences, 112(7), 1941–1946.

Journal of Geophysical Research: Atmospheres 10.1002/2017JD027359

GATELY AND HUTYRA UNCERTAINTIES IN URBAN CARBON EMISSIONS 11,258

https://doi.org/10.1038/nclimate1629
https://doi.org/10.1038/nclimate1629
https://doi.org/10.1029/2002JD002195
https://www.fhwa.dot.gov/policyinformation/hpms/fieldmanual/
https://doi.org/10.5194/acp-16-9019-2016
https://doi.org/10.5194/acp-16-9019-2016
https://doi.org/10.1021/es304238v
https://doi.org/10.1021/es304238v
https://doi.org/10.1073/pnas.1421723112
https://doi.org/10.1016/j.envpol.2017.05.091
https://doi.org/10.3402/tellusb.v56i1.16399
https://doi.org/10.3402/tellusb.v56i1.16399
https://doi.org/10.1029/2007GL032887
https://doi.org/10.1175/2009JAMC2115.1
https://doi.org/10.1175/2009JAMC2115.1
https://doi.org/10.3402/tellusb.v55i2.16728
https://doi.org/10.3402/tellusb.v55i2.16728
https://doi.org/10.1029/2004JD005373
https://doi.org/10.1021/es900806c
http://vulcan.project.asu.edu/pdf/Vulcan.documentation.v2.0.online.pdf
https://doi.org/10.1021/es3011282
https://doi.org/10.1038/525179a
https://doi.org/10.1088/1748-9326/11/6/064005
https://doi.org/10.1002/2016GL070885
https://doi.org/10.1016/j.scitotenv.2017.03.028
https://doi.org/10.1002/2015EF000343
https://doi.org/10.1002/2014EF000255
https://doi.org/10.1002/2014EF000255
https://doi.org/10.1017/CBO9781107415324
https://doi.org/10.1021/es4034364
https://doi.org/10.1002/2015JD024473
https://doi.org/10.4155/CMT.11.10
https://doi.org/10.1016/j.gloenvcha.2012.07.002
https://doi.org/10.1111/j.1600-0889.1985.tb00073.x
https://doi.org/10.1111/j.1600-0889.1985.tb00073.x
https://doi.org/10.1002/2013JD021219
https://doi.org/10.1073/pnas.1116645109


Mendoza, D., Gurney, K. R., Geethakumar, S., Chandrasekaran, V., Zhou, Y., & Razlivanov, I. (2013). Implications of uncertainty on regional CO2
mitigation policies for the U.S. onroad sector based on a high-resolution emissions estimate. Energy Policy, 55, 386–395. https://doi.org/
10.1016/j.enpol.2012.12.027

Metropolitan Area Planning Council (2014). Massachusetts land parcel database. Retrieved from http://www.mapc.org/parceldatabase;
(Accessed on June 10, 2016).

Miller, S. M., & Michalak, A. M. (2016). Constraining sector-specific CO2 and CH4 emissions in the United States. Atmospheric Chemistry and
Physics Discussions, 0, 1–33. https://doi.org/10.5194/acp-2016-643

National Research Council (2009). Driving and the built environment: The effects of compact development on motorized travel, energy use,
and CO2 emissions. Committee for the Study on the Relationships Among Development Patterns and Vehicle Miles Traveled,
Transportation Research Board, and National Research Council Board on Energy and Environmental Systems, Washington, DC.

New York State Department of Environmental Conservation (2016). Data on oil, gas, and other wells in New York state. Retrieved from http://
www.dec.ny.gov/energy/1603.html, (Accessed on June 10, 2016).

Oak Ridge National Laboratory (2014). LandScan Global Population Dataset 2013. Oak Ridge, TN: Oak Ridge National Laboratory.
Oda, T., & Maksyutov, S. (2011). A very high-resolution (1 km × 1 km) global fossil fuel CO2 emission inventory derived using a point source

database and satellite observations of nighttime lights. Atmospheric Chemistry and Physics, 11(2), 543–556. https://doi.org/10.5194/acp-
11-543-2011

Oda, T., Ott, L., Topylko, P., Halushchak, M., Bun, R., Lesiv, M.,… Horabik-Pyzel, J. (2015). Uncertainty associated with fossil fuel carbon dioxide
(CO2) gridded emission datasets. In Proceedings, 4th International Workshop on Uncertainty in Atmospheric Emissions, 7–9 October 2015,
Krakow, Poland (pp. 124–129). Warsaw, Poland: Systems Research Institute, Polish Academy of Sciences.

Ogle, S. M., Davis, K., Lauvaux, T., Schuh, A., Cooley, D., West, T. O.,… Scott Denning, A. (2015). An approach for verifying biogenic greenhouse
gas emissions inventories with atmospheric CO2 concentration data. Environmental Research Letters, 10(3), 34012. https://doi.org/10.1088/
1748-9326/10/3/034012

Olivier, J. G. J. and Janssens-Maenhout, G. (2012). CO2 emissions from fuel combustion. In CO2 Emissions from Fuel Combustion -- 2012 Edition,
IEA CO2 report 2012, Part III, Greenhouse-Gas Emissions.

Patarasuk, R., Gurney, K. R., O’Keeffe, D., Song, Y., Huang, J., Rao, P.,… Ehleringer, J. R. (2016). Urban high-resolution fossil fuel CO2 emissions
quantification and exploration of emission drivers for potential policy applications. Urban Ecosystem, 19(3), 1013–1039. https://doi.org/
10.1007/s11252-016-0553-1

Pennsylvania Department of Environmental Protection (2016). Pennsylvania geospatial data clearinghouse oil and gas locations. Retrieved
from http://www.pasda.psu.edu/uci/DataSummary.aspx?dataset=283, (Accessed on June 10, 2016).

Peters, W., Jacobson, A. R., Sweeney, C., Andrews, A. E., Conway, T. J., Masarie, K.,… Tans, P. P. (2007). An atmospheric perspective on North
American carbon dioxide exchange: CarbonTracker. Proceedings of the National Academy of Sciences, 104(48), 18,925–18,930. https://doi.
org/10.1073/pnas.0708986104

Regional Greenhouse Gas Initiative (2005). Available at: www.rggi.org
Sarzynski, A. (2012). Bigger is not always better: A comparative analysis of cities and their air pollution impact. Urban Studies, 49(14),

3121–3138. https://doi.org/10.1177/0042098011432557
Schneising, O., Heymann, J., Buchwitz, M., Reuter, M., Bovensmann, H., & Burrows, J. P. (2013). Anthropogenic carbon dioxide source areas

observed from space: Assessment of regional enhancements and trends. Atmospheric Chemistry and Physics, 13(5), 2445–2454. https://doi.
org/10.5194/acp-13-2445-2013

Schuh, A. E., Denning, A. S., Corbin, K. D., Baker, I. T., Uliasz, M., Parazoo, N., … Worthy, D. E. J. (2010). A regional high-resolution carbon flux
inversion of North America for 2004. Biogeosciences, 7(5), 1625–1644. https://doi.org/10.5194/bg-7-1625-2010

Shiga, Y. P., Michalak, A. M., Gourdji, S. M., Mueller, K. L., & Yadav, V. (2014). Detecting fossil fuel emissions patterns from subcontinental
regions using North American in situ CO2 measurements. Geophysical Research Letters, 41, 4381–4388. https://doi.org/10.1002/
2014GL059684

State of California AB-32 (2006). California global warming solutions act, health & SC § 38500–38598.
Tohjima, Y., Kubo, M., Minejima, C., Mukai, H., Tanimoto, H., Ganshin, A.,… Kita, K. (2014). Temporal changes in the emissions of CH4 and CO

from China estimated from CH4/CO2 and CO/CO2 correlations observed at Hateruma Island. Atmospheric Chemistry and Physics, 14(3),
1663–1677. https://doi.org/10.5194/acp-14-1663-2014

Turnbull, J. C., Tans, P. P., Lehman, S. J., Baker, D., Conway, T. J., Chung, Y. S., … Zhou, L.-X. (2011). Atmospheric observations of carbon mon-
oxide and fossil fuel CO2 emissions from East Asia. Journal of Geophysical Research, 116, D24306. https://doi.org/10.1029/2011JD016691

Turnbull, J. C., Sweeney, C., Karion, A., Newberger, T., Lehman, S. J., Tans, P. P., … Razlivanov, I. (2015). Toward quantification and source
sector identification of fossil fuel CO2 emissions from an urban area: Results from the INFLUX experiment. Journal of Geophysical Research:
Atmospheres, 120, 292–312. https://doi.org/10.1002/2014JD022555

United Nations (2012). World urbanization prospects, the 2011 revision: Highlights, United Nations Department of economic and social
affairs, Population Division, New York, NY. Retrieved from www.un.org/en/development/desa/publications/ world-urbanization-
prospects-the-2011-revision.html, (Accessed June 01, 2015).

United Nations (2014). 2013 energy statistics yearbook, United Nations Department for economic and social information and policy analysis,
Statistics Division, New York, NY.

United States Census Bureau (2015). American community survey 5-year estimates 2010-2014, table B25040 house heating fuel by Census
Block Group. Retrieved from http://factfinder.census.gov, (Accessed on June 10, 2016).

United States Census Bureau, Center for Economic Studies (2014). Longitudinal employer-household dynamics. Retrieved from http://lehd.
ces.census.gov/data (Accessed on June 10, 2016).

United States Environmental Protection Agency (2008). Regulatory impact analysis—Control of emissions of air pollution from locomotive
engines and marine compression ignition engines less than 30 liters per cylinder (Report No. EPA420-R-08-001a). Washington, DC.
Retrieved from http://www.epa.gov/otaq/regs/nonroad/420r08001a.pdf, (Accessed on September 1, 2015).

United States Environmental Protection Agency (2009a). Office of transportation and air quality. Emission Factors for Locomotives Report:
EPA-420-F-09-025, Tables 1,2,3. Washington, DC.

United States Environmental Protection Agency (2009b). Current methodologies in preparing mobile source port-related emission
inventories final report, Washington, DC.

United States Environmental Protection Agency (2014a). The 2011 National Emissions Inventory. Retrieved from https://www.epa.gov/air-
emissions-inventories/2011-national-emissions-inventory-nei-data, (Accessed on June 10, 2016).

United States Environmental Protection Agency (2014b). Greenhouse gas reporting program. Retrieved from https://www.epa.gov/ghgre-
porting, (Accessed on June 10, 2016).

Journal of Geophysical Research: Atmospheres 10.1002/2017JD027359

GATELY AND HUTYRA UNCERTAINTIES IN URBAN CARBON EMISSIONS 11,259

https://doi.org/10.1016/j.enpol.2012.12.027
https://doi.org/10.1016/j.enpol.2012.12.027
http://www.mapc.org/parceldatabase
https://doi.org/10.5194/acp-2016-643
http://www.dec.ny.gov/energy/1603.html
http://www.dec.ny.gov/energy/1603.html
https://doi.org/10.5194/acp-11-543-2011
https://doi.org/10.5194/acp-11-543-2011
https://doi.org/10.1088/1748-9326/10/3/034012
https://doi.org/10.1088/1748-9326/10/3/034012
https://doi.org/10.1007/s11252-016-0553-1
https://doi.org/10.1007/s11252-016-0553-1
http://www.pasda.psu.edu/uci/DataSummary.aspx?dataset=283
https://doi.org/10.1073/pnas.0708986104
https://doi.org/10.1073/pnas.0708986104
http://www.rggi.org
https://doi.org/10.1177/0042098011432557
https://doi.org/10.5194/acp-13-2445-2013
https://doi.org/10.5194/acp-13-2445-2013
https://doi.org/10.5194/bg-7-1625-2010
https://doi.org/10.1002/2014GL059684
https://doi.org/10.1002/2014GL059684
https://doi.org/10.5194/acp-14-1663-2014
https://doi.org/10.1029/2011JD016691
https://doi.org/10.1002/2014JD022555
http://www.un.org/en/development/desa/publications
http://factfinder.census.gov
http://lehd.ces.census.gov/data
http://lehd.ces.census.gov/data
http://www.epa.gov/otaq/regs/nonroad/420r08001a.pdf
https://www.epa.gov/air-emissions-inventories/2011-national-emissions-inventory-nei-data
https://www.epa.gov/air-emissions-inventories/2011-national-emissions-inventory-nei-data
https://www.epa.gov/ghgreporting
https://www.epa.gov/ghgreporting


United States Environmental Protection Agency (2014c). Technology transfer network, clearinghouse for inventories and emissions factors,
WEBFire emissions factor database. Retrieved from https://www3.epa.gov/ttn/chief/webfire/index.html, (Accessed on June 10, 2016).

Virginia Department of Mines, Minerals, and Energy (2016). Division of gas and oil data information system. Retrieved from https://www.
dmme.virginia.gov/dgoinquiry/, (Accessed on June 10, 2016).

Vogel, F. R., Ishizawa, M., Chan, E., Chan, D., Hammer, S., Levin, I., & Worthy, D. E. J. (2012). Regional non-CO2 greenhouse gas fluxes inferred
from atmospheric measurements in Ontario, Canada. Journal of Integrative Environmental Sciences, 9(sup1), 41–55. https://doi.org/
10.1080/1943815X.2012.691884

West Virginia Department of Environmental Protection (2016). Office of oil and gas well locations. Retrieved from http://tagis.dep.wv.gov/
oog/, (Accessed on June 10, 2016).

Wu, L., Bocquet, M., Lauvaux, T., Chevallier, F., Rayner, P., & Davis, K. (2011). Optimal representation of source-sink fluxes for mesoscale carbon
dioxide inversion with synthetic data. Journal of Geophysical Research, 116, D21304. https://doi.org/10.1029/2011JD016198

Wunch, D., Wennberg, P. O., Toon, G. C., Keppel-Aleks, G., & Yavin, Y. G. (2009). Emissions of greenhouse gases from a North American
megacity. Geophysical Research Letters, 36, L15810. https://doi.org/10.1029/2009GL039825

Yadav, V., Michalak, A. M., Ray, J., & Shiga, Y. P. (2016). A statistical approach for isolating fossil fuel emissions in atmospheric inverse
problems. Journal of Geophysical Research: Atmospheres, 121, 12,490–12,504.https://doi.org/10.1002/2016JD025642

Zhang, X., Gurney, K. R., Rayner, P., Liu, Y., & Asefi-Najafabady, S. (2014). Sensitivity of simulated CO2 concentration to regridding of global
fossil fuel CO2 emissions. Geoscientific Model Development, 7(6), 2867–2874. https://doi.org/10.5194/gmd-7-2867-2014

Journal of Geophysical Research: Atmospheres 10.1002/2017JD027359

GATELY AND HUTYRA UNCERTAINTIES IN URBAN CARBON EMISSIONS 11,260

https://www3.epa.gov/ttn/chief/webfire/index.html
https://www.dmme.virginia.gov/dgoinquiry/
https://www.dmme.virginia.gov/dgoinquiry/
https://doi.org/10.1080/1943815X.2012.691884
https://doi.org/10.1080/1943815X.2012.691884
http://tagis.dep.wv.gov/oog/
http://tagis.dep.wv.gov/oog/
https://doi.org/10.1029/2011JD016198
https://doi.org/10.1029/2009GL039825
https://doi.org/10.1002/2016JD025642
https://doi.org/10.5194/gmd-7-2867-2014


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


